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0--: Preliminrxy Survey in Truncation Errors
in the Numerical Solution of

Partial Differential Equations

The past decade was marked by a burst of interest and activity which
. ~has animated the field of numerical methods in general and'the numerical

solution of differential equations in particular. The interest in numerical
analysis continues to swell, primarily because of the success of the large
scale calculatin~ machines. Progress in mechanical computation has opened
up whole areas heretofore deemed inaccessible. The time required for compou
tation in a given instance is reduced, which, in turn, has thrown us into
lengthy analytical studies and placed additional emphasis on numerical methodso

We concede the necessity to be well grounded in both the principles and
the existent techniques of numerical analysis in order to adast best available
methods to the machine at our disposal, to ccraprehend the inherent limitations
of our methods, and to devise error controls and modified techniques which are
best applicable to that machine. We want to estimate effectively the reliability
of any numerical result we obtain, improve that reliability, whenever it is
possible, and control that reliability in that improved state.

Whereas the availability of large scale rapid caleulations has made feasible
the numerical solution of many problems of previously prohibitive complexity,
the effective use of such devices depends strongly upon continued advancement
of research in relevant fields of mathematical analysis.

One of the most powerful methods for solving a partial differential equation
numerically is the method of finite differences, in which one first approximnates
the differential equation by a difference equation end then solves this resulting
difference equation. We may suspect that since we fail to approach a limit in
obtaining numerical results by these replacements, that these new machines in
using simplest possible methods for the solution of our partial differential
equations will attain desired accuracy by means of many very short steps or by
an ultrafine mesh. But for bigger and bigger problems, the danger of accumulated
error due to many steps and the limitations on fineness of mesh imposed by
limited high speed memory capacity will oppose obtaining accuracy by extravagantly
short steps and ultrafine mesh. 

For all these reasons our new machines intensify our search for methods
simple enough to be coded for practinal use but powerful enough to produce
adequate accuracy withov-, nereasonable reduction in step length or mesh size.
And also, it is often conirenient to retain present methods boosted and improved
with effective error analysis.e
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Often in situations representing real problems, a knowledge of the

physics of the system will give a clear indication of any marked inaccuracy
in the solution. In the absence of such guidance, however, the best that
can be done is a check on the solution by means of a more accurate approxi-

mation to the equation using differences of higher order than those used to

obtain the solution originally. It cannot be too strongly remarked, however,

that such higher difference formlulae should not be used in the original
calculation since they are equivalent to replacing the original differential
equation by one of higher order, and may thus introduce spurious detail into
the solution. A less dangerous procedure is to tuse higher difference formulae
to estimate the error of a result obtained by the use of the simpler methodso

A better method is to decrease the size of the interval keeping in mind
the possibilities of the storage capacity of our machine. Even this does not
necessarily yield results of increasing accuracy. Wle are soon to see that
associated with a numerical method is an inherent error by wuhich we are bound
as long as we employ that method. It is important that we engaged in applica-

tions of finite differences, keep these limitations in mind, lest we find

ourselves incurring heavy labor, in vain, aiming at an accuracy that is not,

in the first places, an inherent concomitant of the process being employed.

Whi; Courant, Friedricks and Levy studied the parabolic equation repre-

senting the one-dimensional flow of heat in a conducting wire, or the diffusion

of a liquid or gas along a porous tube, from the finite difference point of
view, they were lead to ,their fundamental theorem on the relationship between
the space and time intervals. /1 2 a

d-~ ~~i
The important contribution of COurant and his co-workers was to show that it
is not possible to choose the step in x and the step in t arbitrarily if a
btable solution is to be obtained. By considering the difference between the
slution of the differential equation and that of the difference equationsthey
showed that the error was bounded only if _f e A d - / 

and that it grows exponentially with t when ,> ~ . This implies that when
solving an equation of that general -type steps in t and steps in X must be
chosen so as to make 2 '- t '

and that, in consequece, unlimited dqcrease inL the steps in Xwill not lead
to improved accuracy unless accompanied by a suitable decrease in steps in t.
So that when the size of the interval is decreased in any direction, care must
be 'taken to decrease other intervals appropriately. UnfortuLmately, more general
versions of Courant's results are not always available but the known forms may
give some idea of the dimensions involved.

If your intuition has been appealed to in this discourse, it has not been
totally relied upon. Assertions (if the statements contained herein can be so
dignified) were not backed up with praetical examples, but problems of error
analysis have been treated as adequately as time and preparation permitted.
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So, you are looking for a panacea? Beware - it will never suffice every
ill of any numerical method. You already know the answers? Even though it is
suspected tiat you mean mere approximations to the answers, with your keen

" ~ physical-insight into your very own problem and past experience with the special
behavior.o your previous results, what you already know is probably very good;
and therd is a high probability that that can be improved and controlled in
that improved state.

A "Marching"t problem was defined by Richardson as one in which the integral
can be stepped out from a part of the boundary. The prediction of astronomical
events belongs to the marching class. Also, weather prediction belongs to the
sam6, at least if you believe that future weather is determined by present
weather together with astronomical events which are foreknown.

Consider 6 vV2* +f)=O

our barotropie non-dive:gel equation, for which we will be given initially a
field of W's used to extrapolater,,into the future using short time steps. -Our
equation in expanded form reads l

0 D; w~~~~ Al~f ZY y i 

No investigation was made herein as to the relative magnitudes of the steps
cnnsidered in x, y3 :ad t. We shall assume that some kind of rapport has been
reached and for a given step in t, corresponding steps in x and y are likewise
determined. It appears that if we knew any solution that if we also got a series
of numerical solutions we could note any growth of instability and set our bounds.

It is very important that the differences should be"centered". As one
would suspect, otirapproximations are less accurate near the ends of our interval
than near the middle. Central difference formulae have usually proved superior
converging more rapidly than other formulae ahd having smaller remainder terms.

From our field of #'s we estimate our hx and 'y according to the rule:

hf +X-4ayt) - V (X"y9t)
h.

r =*(x,y+k,t) - r (x,yt)

-1 h

These give forward first-difference quotients. The backward first difference
quotients are

_ = (X,yt) - '(x-h,yt)
h

_~~~~ ~ ~~~~~~~~~~~~~~~~~~~~~.. x -
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' = ~(x~y~t) - V (x,y-kt),

- : :Yk

whereas the bfirst central difference
h h

.X=- 2yt)-r (x- 2-yt), and analogously

h

for , Hmever, we have no continuous data, but it is assigned at discrete
point~ which leaves us no alternative but to work with what we have, lest we
start approximating answere obtained from approximated data which might be
worst than backward and forward differences. For points at a left end we might
use a forward difference; for points at a right end we might use a backward
differenceo

What ero shave we made in this estimating our first partialsa? Scarborough
states that the inherent (truncation) error in the difference-equation solution
of a differential equation can be found by expressing the ditfference quotients in
terms of derivatives and this can be done by means of Taylor's folriulae.

In the above f6ormulae "'t" does not vary so we consider 'd a function of xwy:

*It(X-.hL'>)= t~x-y +ii~rx +S -r : .42., 1l +4 W~ A + 

:4(x-hy)= 4xy)- h4 h2 h.3

Forming the forward first difference quotient we see that
h ha

1 (x+h,y)- -r (xy) = XX2 'X- " '% 4 + higher order terms

haWe overestimated + by 2 t *higher order terms, assuming 4r possessesxxx

derivatives of all orders. Similarly 

h2h h h

4 h(XY)-grxhy)= h . higher order terms.
(x3(h x- ~xx x /xx

h h a

We underestimated r byh u - h3 +x +if higher order terms. This leads

by4. x1xxx

us to feel that even 

h2
p (h*y - (x-h ) 11 +- 4 + .higher order terms in

2h x 3. xxx

h4 h2
W,, e, woue-dihave yielded better results, being a "centered" formula and taken

a ponsw r ie.
at pointy s we a re given.
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W~e obtain next -= - + 87 .

And since we have no material for its estimate at the boundary of our region we
will assign V2r a neutral value of zero there.

It is customary to use only the first approximation to the Laplacian obtained
by neglecting the fourth and all higher differences, where also we let h =ko We

define

_ E=x = rnx+ hy) - 24(xy)+ !r (x-h,y)XX .h h2

f b-~~ h2
We define

P y y _YYh
4;(xy+ ')- 2a,(xy)+ ,(x,y-h)

h2

Then r Z 4 -

1 -rl= (xF + hy) y(x-h y) + )+ (xy-)-rxy)
.1~] I ?; ( x+ hyy)+ vl(x~-h,y)+ ),(x, y+ h)+ ~r~x -h)-4?'(xy)] .

Again we inquire about the error we are making.Scarborough defines

the help of Taylor's expansions as

~2 ! +2h2 ~4~ + terms in h4, h6, etc.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.

2h2

+ .

+ +, =)a2. + a$2
i lX YY FXZ Y ;F

terms in h4 2 h6, etc.

+ 2h2 64~ + 2h2

-., -6--~v

14 
+ tenrms in h 2

The error thus committed in writing

~:'+~a'l ,_ +~?
- xZ a~--ba7 = .l l

is thus a power series in even powers of h, the principal part of
the first term of the series and equal to

,2h2' 4 ( -

the error being

1k
WI

Likewise

Adding

w with
Rx

he, etc.

.0

- �2 t
11-1y - '67
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There are other formulae for the Laplacian with their corresponding error

estimates, a few others of which it may do well to mention here.

This formula is due to Kunz presented in his 1957 edition of Numerical
Analysis. Suppose the Laplacian is desired at position (xo,yo). We define U

and v py the equations

U =-X
O ° YY0 rh k possibly.

h k

By Stirling's interpolation formula he defines

)+ : u~(u~-:< rX *()o: lo)+ u bu*("oguyo)-) 2: 'x XoVo 3 +
- ~ ~ ~ ~ ~ ~ ., o o 51 x

: '

a mean dif'ferenceo By definition of u and v~

u=O

.~x(- `! x pk-- x D )+

0

- ' .( .oYo' ' '

Mhere the subscript.'x on the 5x indicates that the differences are formed with
respect to xo In particular

x ' t(xo,)= 'Yo) -((x -y ,o)+ 6'(xXo)-(o+ (xo+ hy yo) s
; 02 0 00 0 A

mhe and c an be handled similarlyt o tiewding
Te* 2I ~~ir: Y., '! (%oO+
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821 3y Oyo)--*xoyg;$)-2arix 77o)+V(X.,Y,+h) 5
aS,(y~ 0oY =(Xn~23-- -

52'4~x y)=~x,~h)-2~r~ 0,y)+6i(x y +)-4( y,)*( y+h/

pr 0 y )=*( 0 y~ -~r(x 0,yb-)6( 0 y)-1(x, 0 h+ 0 y+hY, 0 0 0 0 0 0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

+iq, ) =-7

1IB *(xoyo)- 12 z x V(xo,Yo)+_-I \ V(Xo,yo) +. o 
x o 1- x 0- x 

+ i [2 a ((C o,) -
h- Y OOIi Y 12 Y (oy)+ 1 by (Xo0 ,Yo) +.,y- o-0 Y

For sake of completeness he deems it desirable to obtain the second-order
approximation to the Laplacian by taking into account the fourth differences°
Then with neglect of only sixth, eighth and higher differences

V_ *r(x,o y)

where --

$~~~~~~~~~~~~~~
2 r!(x ,y° [2<(x 0 yo) -12 b lr(x 0 ,y03)+ (yy (X0OY : 2 1xy )I

.If we abbreviate X(x °0 mh.yo)=!;O and r(xOy+nL)=, then

', 2 !,(y )= 5h [F( ,2+t(,-2++-20O l(o, , .-2) 0.+ ;,01Y 1- 0 ')0 1 Y0.o '

For a quick and comprehensive visual aid we present what is called in the
literature a stencil or lozenge below

12-0 ~ ~~~-

ToT 0 y 

I4 rh 2 *- 6 6

The leadingE ter trmncaeted here is 

r 1~90 ( %Vx 0 ,yr).fs~r )tyM(x 0 p y0 ).§

I , 0 W'/ !) I,'(/

I en

F I

0

;a7 + ;e# *

Il
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Realizing that in most difference tables the Differences of ordinarily
behaved functions eventually level off and finally become null,, in general,
we suspect a better approxination with these included terms.

Since it is often good to compute by one method and check by another one
other formiula still will be presented. Booth and Milne, Booth using kAilne as
a reference, are chief advoaates of the identity to follow below.

@ A~~~~~~~~~

We define an operator H for approiimating the Laplacian

HI t ( xh ,ho0 )+*( Xo-h ,yo )+ '(x0 y 0+h)+*,( %'aoyo-h-4t(x ,y )]

and by stencil

=: 1

And we define 2 X likewise for approximatig the Laplaciano

2X *:,j(x o-h yO+h )+V( xo~ hyo+h )+Wj(xo-hyo-h )+( xo+hyo-h )-4-( xy.o )

and again by stencil or lozenge

-4= 2Xo

-1

Introduce operations E and E defined as follows:
x y

,E.r( xy) _~!;(x}h~y) 

E t(xy)i t(X, ), with symbolic

E = exp h 7
x 

Ey =exp h 
y~~~~~~ 

expression for E we have

- _4 D

X . y y

associations

1

1 -4 1

1

From theFrm the

:k

I 



RW Employing an exponential expansion

""f)_h2-(N," t 1 4VF li.I 1 1.. 

if we letl ~E +- :~ -' ' + : 
Again we see that if we let i2* (') our error is in overestimating t

hp by T- V 4 by a first. term approximation And from 2X, we have:

b y Ex 1 ['1 2 o
EY U E Y x y

which by employing again our exponential expansion leads. to
~~~~~,'42X('t1) .2h2b r i>+ h a t r + he 4___e

- : F e~1- p<<$ O0 VG*wheniceax(~ ~2~+ ~! ~E+ h( v '

(.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

So if we' approximate by 2Xr our error is in overestimating V2 by l-2-

(vo4i +6 - ) by the first term approximation. So we notice that as is to

be expected from the effectively larger interval of differencing involved in
calculating 2X, the error term., although O(h2)= order of ha, has a larger
coefficient than in the equation for IH().

In the special case of the Laplace equation where V2 =0

4~~~~~~

Our equation for 2X(#,~ becomes

he
2X(*) -A1-V21P 7t)- h Vo'lV)+ toV(Q0

Combining this equation for 2X( I) with the equation for I we have

(4n 2X)()= 6h2 ()+ hi 7(f1)+ ' ' ' '

or

':34-b 0 ,



By stencil or lozenge representation (4EH+2X) is

=K according to Milne. This is still another

approximatAing formula for the Laplacian.

K(*)
6h2

-6h2- ,where -

defines 1 2 = 2X - 2H =

h4 ()+ 
3To- , 0 

h0
36-0 0 is the first term

ft

truncated. He also

h1~4
Ir4b4 +0 (h 6 ).

Milne replaces X and H by usa
identity.

2 5
,a 6= 1 7 (_72- +K0

6h2 2 3

ing K eand N2 and concludes that below

2_7 12K4960 57N2
172Go,c,6o 3780 

N,

when truncated to N terms, when applied to any polynomial in x and y of degree
less than 2N1,+2.

We had found our first partials in *. Our first partials for (V* +f) are
found in an aialogous way. In finding our Jacobian, we are muitiplying together
approximated partial derivatives. It cam easily be shown t1at the relative error
in either product is the smu of the relative errors of the two factors multiplied,
where we define a relative error as the actual error divided by the magnitude of
the number in question. But we can expect the significant error terms in our'
time derivative to be the suunm

-(error in -- x)(V2l+f)y-[error in (V-m+f)yjo + (error in 'y)(V+)x + [error in

I 4 1

4 -20 4

1 4. 1

1 -2 1

-2 '4 -2

1 -2 1

is a true

i + ° )

J

* i ',{ r

r

k( V212+J. VIY.J

xi, 

.I



We assume here that we have 2 defined for every internal point with the
value zero assigned for every point on the boundary. We proceed to obtain i.
Our problem. seems comparable to a Poisson equation in two dimensions.

.~~~~~~~~~~~~~~~~~~~~
- f aa.,~~~ - 42Rr p(x ):f1 3

6y2

Milne has this to say: We overlay our region concerned with a square lattice
,$ having mesh length h and replace the original equation by an appropriate difference

equation. t'dimplest such equation is H(*) =hmf(x,y), which follows readily
from our previous definition of H, the local error being

: 2 V 0 , as previously stated, by a first approximation.
12- o

We secure a somewhat more accurate difference equation by the formula for v2
above, which gives

KI'- - '= -6h2f(xy)+ o(h6).

For computational pUi4p.oses this equation can be considerably improved if the
funmction f(x,y) is such that V2f(xy) exists every where in the rpgion. For in
that coe? we have approxinately

*Je* =3C6h V =36h 2f(xy)

(since our operator

X: 6h2+ o(h ) )

and we replace the equation above with
4

Kil =6h2f(xy)+ 2-. 2f~,(y)

and our error has for its leading tenn -- , jtVorder of h. If

f(x,y)!.wppens to be harmonic, we get a simple equation

KVr= 6h12 f(X y).

Should we use the equation
h4

$~~~~~~~~~~~
K (*)= 60-L(xpy)+ 2 leffx -r
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We can use the familiar finite difference form

(4H+2X) V1-K(*)=

4*f(x+h y-,4i(x-h, y) +44(xyl)+4'((x Y-h) +*(x h+,y-+h) +

r(x -h.y+h)+,rf(x-h,y-h) +,f(x+h , y-h) -201t(xy)=

6h2f(x,y)+= jX f(xyy) 

and from this

-(x ,) 2 [ 4.(x+h,y)+4V(x-h, y) +4f(xgy+h)+4Gi[(x y-h) +a(x+h,y+hn)

+ ~f(x-h,y+hl)+i(xh-i,y-h)+t(x+h,y-h)-Sh f(x y)- 2 -- f(xyl 0

The method most heralded by modern authorities for solving equations of this

type is the method of iteration . Scarborough says this: "The greatest drawback

to the method of iteration is its great length. . Compu tational errors in the

method of iteration are Ji.maediately evident and are self-correcting. . o The

iteration process is slow, sure, and frequently long. . . The iteration process

can be performed mechanically by an automatic sequence-controlled calculating

machine . . Because of the perfectly arbitrary manner in which the relaxations

are made, the relaxation process cannot be carried out by an automatic calculating

machine. . If an automatic sequence - controlled calculating machine is

available, a process of iteration would be used."

We start out with a coarse net (large value of h). Then wherD iteration

given no further improvement in the V's -the whole process is repeted with a

finer net (smaller value of h) and the iteration is carried on un.,L1 no change
occurs in the 'Is. The method of iteration starts with the upper left-hand corner
of the network and proceeds to correct all network values by means of the formula
presented above, using the latest computed values availableef(xy),V7f(x,y), and

h we know. $I's from a previous time step should prove a good initial guess. The

process is carried out in a systematic and definite order by goJing fromn left to

right until the end of a line is reached and then dropping down to the next

line, just as in reading the consecutive lines of a printed page. This method

of correcting the network values is continued until no further improvements can

be effected by the iteration process.

FinallyI shall present in modified form a simaple formula set forth by

Scarborough, which enables us to see that to know merely the order of a trunmcation

error is good information. If our error is of the order of hn, we have

E =Chn
where E is our error and C is a constant of proportionality. Then for any two -

values h, and h2 of h2 the corresponding errors are

E1=Ch, E2 =Ch2

from which

2 2 or E h n -
2- oB1 h1 n
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If h2
= 1 hl, then
2 =~

1 nE2= ( 2) El

Let a1 and a2 denote the final approximate values of the function i? at any

interior mesh point, corresponding to hl and h2 respectively. Then

=a+ E1 = a2 + E2

Eliminating r and taking account of E2=

2-a1E2= 2

2n - !

I n
(-2 E1 , we get

This fomula gives the approximate value of the inherent error at
intersection point of the network after two values of h have been
second value of h being haef the first valueo

each
used, the

Since = 2+ E2, we can substitute the value of E2 and get

which e t i( tr vae)
2L - t

which gives a close approximation to the true value of * at any net point.

* * * * * * *

This is a modest paper - far too modest for one to present as representative
of the magnitude of the problem involved with any degree of pride. But if you
have been made anxious to any degree about an error problem or if a single
question has arisen in your mind concerning the material that is presented
herein (great wonder it is not ignored), then the failures this effort is bound

to experience will not have been total.

r 

!
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